ImpactU Versión 3.11.2 Última actualización: Interfaz de Usuario: 16/10/2025 Base de Datos: 29/08/2025 Hecho en Colombia
Comparación de metodologías basadas en una red neuronal artificial y un modelo GARCH para el pronóstico de la volatilidad del precio de las acciones cotizados en la BVC
La volatilidad y de manera más general la covarianza de los precios de las acciones es de gran interés para medir los posibles riesgos que pueda tener la compra y venta de éstas, además de proporcionar datos para determinar su rentabilidad. La escasa literatura sobre la implementación de modelos DCC-MGARCH (dynamic conditional correlation GARCH Multivariate) y RN-LSTM (long - short term memory recurrent network) en el mercado financiero colombiano para el pronóstico de la volatilidad de las acciones, llevó a la realización de este trabajo, en el que se comparan estos dos modelos utilizando los softwares R (R Core Team, 1990) y Python (Van Rossum & Drake Jr, 2009), para el pronóstico de la volatilidad del precio de cuatro acciones. Con los datos suministrados se estimaron las volatilidades y covarianzas para luego realizar pronósticos con ambas herramientas y realizar una comparación entre ambas. Del estudio se encontró que el desempeño de ambas metodologías tienen gran similitud, aunque algunas medidas del error de los pronósticos fueron levemente mejor con la RN-LSTM y otras con el modelo DCC-GARCH. Con el objetivo de profundizar más en los análisis de estas volatilidades es adecuado incrementar la cantidad de activos para conocer la incidencia que pueden llegar tener cada uno de éstas en los cálculos de las covarianzas. (Texto tomado de la fuente)