En los últimos años la industria avícola ha experimentado tanto a nivel mundial como en Colombia un importante crecimiento, lo cual unido a la exigencia de la normatividad ambiental vigente conlleva al control y disminución de las emisiones de amoniaco dentro de los galpones. El amoniaco proveniente de las deyecciones puede afectar a las aves y a las personas generando problemas de salud y pérdidas económicas en dicha industria. La cantidad de la emisión de amoniaco depende de las condiciones ambientales y de diversas variables de diseño y operación presentes en las actividades avícolas. En este trabajo, para la predicción de la emisión de amoniaco liberadas al aire dentro de galpones para aves de postura y engorde, se elaboraron redes neuronales artificiales multicapa feedforward – backpropagation, evaluando su desempeño a partir del coeficiente de correlación lineal R. Posteriormente, se usó la red neuronal seleccionada y entrenada para analizar la influencia de diferentes variables en la generación de emisiones de NH3. Se analizaron las variables ambientales; temperatura, humedad relativa, pH, flujo de aire. Las variables de operación; densidad, tiempo de acumulación del estiercol, consumo de proteína, raza de las aves y factores de diseño como el tipo de ventilación, tipo de galpón y tipo de cama, se sugirieron algunas condiciones de operación para reducir las emisiones de NH3. Los resultados de correlación entre las emisiones reales y estimadas por la red neuronal (R=0.99), muestran que la herramienta computacional desarrollada es confiable en la predicción de las emisiones y abre una agenda futura para la optimización y diseño de ambientes controlados mediante aprendizaje de máquinas basadas en redes neuronales (texto tomado de la fuente).