Los Betacoronavirus han causado a su paso epidemias mortales, como el brote de SARS-CoV de 2002 y la continua prevalencia del MERS-CoV que se detectó por primera vez en 2012. A finales de 2019, se inició la pandemia de COVID-19, lo que impulsó a los científicos de todo el mundo a aplicar sus respectivos conocimientos para abordar cómo el SARS-CoV-2 infecta a los humanos. La principal estrategia ha sido la implementación de sistemas convencionales de vigilancia sanitaria para identificar, intervenir y controlar las infecciones virales causadas por estos virus emergentes. Aunque el seguimiento de la evolución genética del virus ha sido de gran importancia, se desconoce hasta qué punto es posible la transmisión zoonótica entre especies animales susceptibles y no susceptibles, así como la eventual funcionalidad de la arquitectura estructural del genoma de RNA de los Betacoronavirus en la fisiopatología, principalmente para SARS-CoV, MERS-CoV y SARS-CoV-2. Para llenar este vacío de conocimiento y facilitar el desarrollo de tratamientos eficaces, se realizó un estudio amplio de los genomas de los Betacoronavirus mediante el análisis de 1,252,952 secuencias virales reportadas en bases de datos que han circulado desde el 2002 pasando de reservorios naturales a huésped intermedio y humanos. Este trabajo considera dos enfoques diferentes de representar la información genómica, como se presentan y discuten en el capítulo 2: Análisis de secuencia. Esta parte del trabajo presenta un análisis evolutivo de transmisión horizontal en las secuencias virales para caracterizar y describir completamente la variación intra-hospedera de los Betacoronavirus. Los resultados revelan que cambios de aminoácidos en la subunidad S1 de la proteína S de SARS-CoV (G > T; A577S), MERS-CoV (C > T; S746R y C > T; N762A) y SARS-CoV-2 (A > G; D614G) con señales de selección positiva son factores fundamentales que subyacen al posible salto de barrera de los murciélagos al huésped intermedio. El capítulo 3: Análisis estructural, es una sección que explora los Betacoronavirus a nivel estructural como propuesta para descubrir si el plegamiento de estructuras secundarias de RNA conservadas podrían actuar como loci putativos para procesar RNAs pequeños virales, con una posible función asociada a la patogénesis en proceso de selección. Más del 87.58% de estas estructuras de RNA indican que 12 regiones portan RNAs pequeños en los Betacoronavirus, sugiriendo la posibilidad de modular la reprogramación transcripcional del nuevo huésped después de la infección. Los hallazgos de este estudio proporcionan una serie de significativos patrones moleculares que contribuyen a expandir las fronteras de la terapéutica humanos en el contexto de la actual crisis sanitaria mundial.