RESUMEN: En este trabajo de tesis doctoral, en el marco de electrodinámica cuántica de cavidades de la interacción de la luz y la materia bajo bombeos coherentes e incoherentes y disipaciones, se estudian dos sistemas físicos conformados por excitones y cavidades de cristal fotónico. El primer sistema consta de dos nano-cavidades con un punto cuántico embebido en una de ellas (molécula fotónica). Se estudia su dinámica por medio de la ecuación maestra sin un término de acople entre las cavidades y se calcula el espectro de fotoluminiscencia con el formalismo de funciones de Green. Se encontró que el bombeo excitónico puede suplir el término de acople entre las cavidades. El segundo sistema consta de dos puntos cuánticos inmersos en una cavidad de cristal fotónico (molécula de puntos cuánticos) con un término de tunelamiento entre ellos. En este sistema se estudian tres modelos de cuasipartículas en el estado estacionario, esquema de estados desnudos, molecular y polaritónico que profundizan en la física involucrada en los autoestados del hamiltoniano para tres conjuntos de parámetros que optimizan o maximizan las condiciones del gap energético. Se analizan a fondo, características de medidas cuánticas como la composición fraccional, la entropía lineal y la concurrencia, para determinar cual descripción da información física más detallada del sistema como el entrelazamiento y la pureza de los estados. Se analizan también, observables como el espectro de fotoluminiscencia, correlaciones de segundo orden, número medio de fotones y número medio de excitaciones.