We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a training of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead high-fidelity ECG employing and combining the results of several advanced ECG software techniques shows great promise as a rapid and inexpensive tool for screening of heart disease.