The pseudorapidity ($\eta$) distributions of charged hadrons are measured using data collected at the highest ever nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV for collisions of lead-lead ions. The data were recorded by the CMS experiment at the LHC in 2022 and correspond to an integrated luminosity of 0.30 $\pm$ 0.03 $\mu$b$^{-1}$. Using the CMS silicon pixel detector, the yields of primary charged hadrons produced in the range $\vert\eta\vert$ $\lt$ 2.6 are reported. The evolution of the midrapidity particle density as a function of collision centrality is also reported. In the 5% most central collisions, the charged-hadron $\eta$ density in the range $\vert\eta\vert$ $\lt$ 0.5 is found to be 2032 $\pm$ 91 (syst), with negligible statistical uncertainty. This result is consistent with an extrapolation from nucleus-nucleus collision data at lower center-of-mass energies. Comparisons are made to various Monte Carlo event generators and to previous measurements of lead-lead and xenon-xenon collisions at similar collision energies. These new data detail the dependence of particle production on the collision energy, initial collision geometry, and the size of the colliding nuclei.
Tópico:
High-Energy Particle Collisions Research
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
No hay DOI disponible para mostrar altmétricas
Información de la Fuente:
FuenteOSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)