ImpactU Versión 3.11.2 Última actualización: Interfaz de Usuario: 16/10/2025 Base de Datos: 29/08/2025 Hecho en Colombia
Validación mediante el Método PPI de un Algoritmo Computacional para la Medición Automática del Área de Afectación por Sigatoka Negra en Imágenes de Hojas de Plátano del Departamento del Meta, Colombia
Sigatoka Negra, es una fitopatología causada por el hongo Mycosphaerella fijiensis, que reduce la producción de plátano y banano. Actualmente en Colombia los métodos de detección se basan en análisis visual sobre la plantación y para establecer la relación porcentual del área afectada se usa la escala de Stover. Este trabajo tuvo como objetivo comparar dos métodos de medición del estadio de Sigatoka Negra en hojas de plátano, el primero fue el cálculo manual de PPI, el cual permitió establecer el porcentaje de afectación de una plantación según la escala de Stover modificada por Gaulh y el segundo, un algoritmo computacional desarrollado en el Toolbox Image Processing del software MATLAB 2014, el cual determinó el área de afección de la enfermedad de forma automática. Se compararon los dos métodos utilizando 50 imágenes biológicas provenientes de plantaciones de plátano del Departamento del Meta. Col. Finalmente se logró validar el algoritmo computacional desarrollado, identificando los estadios desde el 3 hasta el 6, utilizando un umbral de color asociado al porcentaje de área necrótica del tejido, el cual correspondió 15% para el estadio 3, 16-33% para el estadio 4, 34-50% para el estadio 5 y 50% en adelante para el estadio 6.
Tópico:
Business, Innovation, and Economy
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
No hay DOI disponible para mostrar altmétricas
Información de la Fuente:
FuenteDOAJ (DOAJ: Directory of Open Access Journals)