Logotipo ImpactU
Autor

Combinatorial Relationship Between Finite Fields and Fixed Points of Functions Going Up and Down

Acceso Cerrado

Abstract:

We explore an combinatorial bijection between two seemingly unrelated topics: the roots of irreducible polynomials of degree $m$ over a finite field $F_p$ for a prime number $p$ and the number of points that are periodic of order $m$ for a continuous piece-wise linear function $g_p:[0,1]\rightarrow[0,1]$ that \emph{goes up and down $p$ times} with slope $\pm 1/p$. We provide a bijection between $F_{p^n}$ and the fixed points of $g^n_p$ that naturally relates some of the structure in both worlds. Also we extend our result to other families of continuous functions that goes up and down $p$ times, in particular to Chebyshev polynomials, where we get a better understanding of its fixed points. A generalization for other piece-wise linear functions that are not necessarily continuous is also provided.

Tópico:

Coding theory and cryptography

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

No hay DOI disponible para mostrar altmétricas

Información de la Fuente:

FuentearXiv (Cornell University)
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista