espanolA comienzos del siglo XX, cuando la geometria euclidiana estaba en su apogeo, surgio en las matematicas una rama llamada geometria fractal que invitaba a estudiar estructuras geometricas que tenian cierta complejidad, con procesos de iteracion infinita y autosimilitud, que hasta entonces eran consideradas como monstruos matematicos. Autores como Poincare[1], Gaston Julia[2], Cantor[3],Sierpinski[4], entre otros, fueron los precursores del estudio de la teoria fractal. En el presente articulo se dan a conocer los principios basicos de la Geometria Fractal, donde se adelantan aplicaciones con el fin de desarrollar una secuencia didactica interdisciplinar para fortalecer el pensamiento geometrico- metrico en los cursos de basica secundaria, especialmente en el grado noveno de la Institucion Educativa Luis Carlos Trujillo Polanco de la Plata (H). Igualmente, se dan unas pautas para recomendar a la Institucion Educativa y proponer la inclusion de dicha Geometria en algunos grados de basica secundaria, desde el area de matematicas. EnglishAt the beginning of the 20th century, when Euclidean geometry was at its peak, a branch called fractal geometry emerged in mathematics and invited to study geometric structures with certain complexity through processes of infinite iteration and self-similarity which, until then, were considered mathematical monsters. Authors such as Poincare, Gaston Julia, Cantor, Sierpinski, among others, were the precursors to the study of fractal theory. In this article, the basic principles of Fractal Geometry are presented, where applications are advanced in order to develop an interdisciplinary didactic sequence to strengthen geometric-metric thinking in secondary school courses, especially in the ninth grade of the Luis Carlos Trujillo Polanco Educational Institution in La Plata (H). Likewise, some guidelines are given to the Educational Institution as recommendations and propositions to include the aforementioned Geometry in some grades of secondary school from the mathematics area.