This doctoral thesis was designed and implemented using a strategy of explorer agents and a management and monitoring system to obtain the shortest and safest paths. The strategy was simulated using Matlab R2016 in 10 test environments. The comparisons were made between the results obtained by considering each robot's work and contrasting it with the results obtained by implementing the cooperative-collaborative strategy. For this purpose, were used two path planning algorithms, they are the A* and the Greedy Best First Search (GBFS). Some changes were made to these classic algorithms to improve their performance to guarantee interactions and comparisons between them, transforming them into Incremental Heuristic (IH) algorithms, which gave rise to a couple of agents with new path planners called IH-A* and IH-GBFS. The cooperative strategy was implemented with IH-A* and IH-GBFS algorithms to obtain the shortest paths. The cooperative process was used 300 times in 100 complete tests (3 times in 10 tests in each of 10 environments), which allowed determining that the strategy decreased the original path (without cooperation) in 79% of the cases. In 20.50% of cases, the author identified that the cooperative process, reduced to less than half the original path. The collaborative strategy was implemented to obtain the safer path, using a communications system that allows the interaction among the explorer agents, the test environment, and the management and monitoring system to generate early warnings and compare the risk between paths. In this work, the risk is due to hidden marks found by the explorer agents; for this reason, it is implemented a potential risk function that allows obtaining the path risk estimated. The path risk estimated metric is the one that facilitates the evaluation and comparison of risk between paths to find safer paths. The AWMRs operates using a kinematic model, a controller, a path planner, and sensors that allow them to navigate through the environment gently and safely. Simultaneously with the explorer agents, the administration and monitoring system as a user interface that facilitates the presentation and consolidation of results were implemented. Subsequently, 16 tests were carried out, implementing the complete cooperative-collaborative strategy in four different environments, which had hidden marks. When analyzing the results, it was determined that the Shortest Safest Estimated Path was found in 62.5% of the tests. A WMR and a square test stage were built. In the test scenario, 240 path tracking tests were carried out (the WMR travelled 24 different paths; the WMR travelled each path ten times). The path data were obtained using odometry with encoders onboard the robot and image processing through an external camera. The author apply a tracking error analysis on the WMR path, travelling a circumference of 3.64 m in length. When comparing the path obtained with the WMR kinematic model with the data obtained using image processing, a Mean Absolute Percentage Error (MAPE) of 2,807% was obtained; and with the odometry data, the MAPE was 1,224%. As a general conclusion, this study has numerically identified the relevance of the implementation of the cooperative-collaborative strategy in robotic teamwork to find shortest and safest paths, a strategy applied in test environments that have obstacles and hidden marks. The cooperative-collaborative strategy can be used in different applications that involve displacement in a dangerous place or environment, such as a minefield or a region at risk of spreading COVID-19 (Texto tomado de la fuente).