Corn is considered one of the most important cereal crops worldwide. As many other countries, Colombia has used this cereal not only to feed humans and animals but also to manufacture many different industrial products. Corn plants are well adapted in different climatic and ecological conditions in Colombia which allows it to be widely distributed throughout the country. Some of its natural adaptations are attributed to the existence of symbiotic relationships with Arbuscular Mycorrhizal fungi (AMF) which promote the nutrient uptake, especially those with known low mobility such as phosphorus (P) and nitrogen (N). AMFs associated to corn crops were identified in samples collected in the fields of the municipality of Sabanalarga (Atlantico, Colombia). The number of spores per 100 g of soil was determined by sieving following sucrose centrifugation standard protocols. The number of spores per 100 g of soil showed statistically significant differences during the months of sampling (p < 0.05). A total of 19 morphotypes, corresponding to twelve species of the genus Glomus, five of the genus Gigaspora, and one species of both genus Acaulospora and Scutellospora were identified. A negative correlation between temperature and number of spores was found but no correlation between pH and the spore density, percentage of colonization and soil temperature variables was found. Additionally, low organic matter content (0.99%) and low cation exchange capacity (7.50 cmol*soil-Kg-1) were reported. These results, in addition to the fact that this kind of crops are highly dependent of mycorrhizal fungi activity, explain the spore density (400-1350 spore/ 100 g) and the high percentage of colonization (40-98%) that were obtained during sampling. It is clear that this cereal crop depends on the presence of mycorrhizal fungi during nutrient uptake.