En el presente trabajo estudiamos los ideales primos asociados de algunos anillos no conmutativos de tipo polinomial. En la literatura encontramos que estos ideales fueron caracterizados en un primer trabajo por Brewer y Heinzer (1974), donde ellos muestran que los ideales primos asociados de un anillo de polinomios sobre un anillo R pueden ser extendidos a partir de los ideales primos asociados de R. A partir de esto, diferentes autores han extendido este resultado para otras estructuras como lo hizo Annin (2004) desarrollando su trabajo sobre las extensiones de Ore. Otro trabajo que resaltamos es el realizado por Bhat (2010) en donde él caracterizó los ideales primos asociados sobre anillos $\sigma$-rígidos débiles. A partir de los resultados encontrados en la literatura, en este trabajo extendemos estos trabajos para las extensiones PBW torcidas introducidas por Gallego y Lezama (2011). Nosotros desarrollamos nuestro trabajo en dos partes: primero, extendemos los resultados de (2004) para las extensiones PBW torcidas. Con este objetivo en mente, presentamos algunas propiedades de esta estructura bajo la condición de $(\Sigma, \Delta)$-compatibilidad (definida en Hashemi, Khalil and Alhevaz (2017) y Reyes and Suarez (2018)) y definimos la noción de anulador complaciente (noción definida por Annin (2004) para extensiones de Ore) sobre las extensiones PBW torcidas. Como una segunda parte, extendemos los resultados de Bhat (2010), para las extensiones PBW torcidas sobre anillos $\Sigma$-rígidos débiles introducidos en Reyes and Suarez (2018).