La siguiente Tesis de Maestría propone una metodología para el análisis de series de tiempo no-estacionarias con el propósito de filtrado y detección de ruido en reconocimiento de patrones. La metodología se encuentra dividida en dos etapas: el análisis de comportamientos no-estacionarios que recaen en procesos cíclicos y como diferentes componentes no-periódicos afectan el análisis de la señal. El segundo enfoque, está centrado en el problema de extracción de series de tiempo no-estacionarias que afectan procesos estacionarios. Ambos esquemas están basados en restricciones de (ciclo-)estacionariead y representaciones basadas en subespacios de manera que mediante la evaluación de las dinámicas de la señal sea posible identificar las componentes no-estacionarias indeseadas. Los resultados se muestran para cada enfoque de manera independiente por medio de datos sintéticos y reales, el desempeño obtenido muestra una gran capacidad de detección, rechazo y/o extracción de ruido y artefactos en series de tiempo (ciclo-)estacionarias usando restricciones de estacionariedad así como condiciones cíclicas basadas en la naturaleza de la señal