ImpactU Versión 3.11.2 Última actualización: Interfaz de Usuario: 16/10/2025 Base de Datos: 29/08/2025 Hecho en Colombia
Modificación de superficies de carbono por reducción electroquímica de 1,10-Fenantrolina en medio ácido para la remediación de aguas contaminadas con plomo y mercurio
Carbon surfaces were modified with 1,10-phenanthroline molecules by cyclic voltammetry technique, for applications in heavy metals electrodeposition of contaminated water. The electrochemical reduction of 1,10-phenatroline was carried out, with cyclic voltammetry using carbon electrodes (glassy carbon and pencil graphite) in acid medium. The modification of the surface was confirmed through the electrochemical behavior of the surfaces, using 0.100 mol L–1 sulfuric acid blank. As result two peaks of electrochemical oxidation at 0.48 and 0.80 V vs Ag / AgCl, were observed, which evidence the modification of the surfaces. Surface modification was achieved by electrochemical reduction in an acid solution of 1,10-phenanthroline by 15 voltammetric cycles. These modified surfaces were used for the electrorremediation of containing lead and mercury solutions. Parameters such as pH and deposition potential were optimized by potential step chronoamperometry for 800s, finding that the best deposition potential is -0,700 V vs Ag / AgCl, and the optimum range of operative pH was between 3.00 and 5.00. Finally, atomic absorption spectroscopy was used to determine the amount of absorbed lead from the solution. The lead retention values were 41.55% and 40.91%, when the potential effect and pH were studied, respectively. In the electroremediation of mercury, 22.42% was eliminated when the effect of the potential was evaluated and 53.87% was eliminated in the study of the pH effect. The new surfaces generated with this work, could be used for the remediation of heavy metals contaminated waters.