Logotipo ImpactU
Autor

Liouvillian solutions for second order linear differential equations with polynomial coefficients.

Acceso Cerrado

Abstract:

In this paper we present an algebraic study concerning the general second order linear differential equation with polynomial coefficients. By means of Kovacic's algorithm and asymptotic iteration method we find a degree independent algebraic description of the spectral set: the subset, in the parameter space, of Liouiville integrable differential equations. For each fixed degree, we prove that the spectral set is a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically quasi-solvable potentials in the Schrodinger equation.

Tópico:

Quantum Mechanics and Non-Hermitian Physics

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

No hay DOI disponible para mostrar altmétricas

Información de la Fuente:

FuentearXiv (Cornell University)
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista