Logotipo ImpactU
Autor

On a class of anharmonic oscillators

Acceso Cerrado

Abstract:

In this work we study a class of anharmonic oscillators within the framework of the Weyl-Hormander calculus. The anharmonic oscillators arise from several applications in mathematical physics as natural extensions of the harmonic oscillator. A prototype is an operator on $\mathbb{R}^n$ of the form $(-\Delta)^{\ell}+|x|^{2k}$ for $k,\ell$ integers $\geq 1$. The simplest case corresponds to Hamiltonians of the form $|\xi|^2+|x|^{2k}$. Here by associating a Hormander metric $g$ to a given anharmonic oscillator we investigate several properties of the anharmonic oscillators. We obtain spectral properties in terms of Schatten-von Neumann classes for their negative powers. We also study some examples of anharmonic oscillators arising from the analysis on Lie groups

Tópico:

Mathematical Analysis and Transform Methods

Citaciones:

Citations: 11
11

Citaciones por año:

Altmétricas:

No hay DOI disponible para mostrar altmétricas

Información de la Fuente:

FuenteNo disponible
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible
Perfil OpenAlexNo disponible

Enlaces e Identificadores:

Artículo de revista