In this paper we present a new methodology for detecting sound events in music signals using Gaussian Processes. Our method firstly takes a time-frequency representation, i.e. the spectrogram, of the input audio signal. Secondly the spectrogram dimension is reduced translating the linear Hertz frequency scale into the logarithmic Mel frequency scale using a triangular filter bank. Finally every short-time spectrum, i.e. every Mel spectrogram column, is classified as “Event” or “Not Event” by a Gaussian Processes Classifier. We compare our method with other event detection techniques widely used. To do so, we use MATLAB® to program each technique and test them using two datasets of music with different levels of complexity. Results show that the new methodology outperforms the standard approaches, getting an improvement by about 1.66 % on the dataset one and 0.45 % on the dataset two in terms of F-measure.
Tópico:
Gaussian Processes and Bayesian Inference
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
No hay DOI disponible para mostrar altmétricas
Información de la Fuente:
FuenteDOAJ (DOAJ: Directory of Open Access Journals)