Logotipo ImpactU
Autor

Least Square Support Vector Machine Classifier vs a Logistic Regression Classifier on the Recognition of Numeric Digits

Acceso Cerrado
ID Minciencias: ART-0001174088-22
Ranking: ART-ART_D

Abstract:

In this paper is compared the performance of a multi-class least squares support vector machine (LSSVM mc) versus a multi-class logistic regression classifier to problem of recognizing the numeric digits (0-9) handwritten. To develop the comparison was used a data set consisting of 5000 images of handwritten numeric digits (500 images for each number from 0-9), each image of 20 x 20 pixels. The inputs to each of the systems were vectors of 400 dimensions corresponding to each image (not done feature extraction). Both classifiers used OneVsAll strategy to enable multi-classification and a random cross-validation function for the process of minimizing the cost function. The metrics of comparison were precision and training time under the same computational conditions. Both techniques evaluated showed a precision above 95 %, with LS-SVM slightly more accurate. However the computational cost if we found a marked difference: LS-SVM training requires time 16.42 % less than that required by the logistic regression model based on the same low computational conditions.

Tópico:

Face and Expression Recognition

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

No hay DOI disponible para mostrar altmétricas

Información de la Fuente:

FuenteDOAJ (DOAJ: Directory of Open Access Journals)
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Minciencias IDART-0001174088-22Scienti ID0001174088-22Openalex URLhttps://openalex.org/W2799043828
Artículo de revista