Logotipo ImpactU
Autor

A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values

Acceso Cerrado
ID Minciencias: ART-0000141437-39
Ranking: ART-ART_D

Abstract:

Using the standard deviation of the real samples μ n ≥ … ≥ μ 1 and λ n ≥ … ≥ λ 1 , we refine the Chebyshev's inequality (refer to [5]), As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4]) where Cov [μ, λ], s (μ) and s (λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ 1 , …, μ n ) and λ = (λ 1 , …, λ n ), respectively. We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.

Tópico:

Mathematical Inequalities and Applications

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

No hay DOI disponible para mostrar altmétricas

Información de la Fuente:

FuenteBoletín de Matemáticas
Cuartil año de publicaciónNo disponible
Volumen23
Issue2
Páginas105 - 114
pISSNNo disponible
ISSN0120-0380

Enlaces e Identificadores:

Artículo de revista