La expansion del universo durante la etapa in acionaria puede ser descripta en una primera aproximacion con la metrica de De Sitter. El calculo de las funciones de correlacion cuanticas de los campos en esta geometria es importante para contrastar los modelos con las observaciones de precision del fondo cosmico de microondas. En el caso de campos muy livianos comparados con la curvatura del espacio tiempo, estos calculos estan plagados con efectos infrarrojos, los cuales podrian estar indicando una falla en la teoria de perturbaciones. En este sentido, algunos calculos no perturbativos han mostrado que las interacciones generan una masa dinamica, que tiene el efecto de regular las posibles divergencias infrarrojas. En esta tesis se estudian algunos aspectos de la teoria cuantica de campos en De Sitter mediante diversos metodos no perturbativos, con el objetivo de comprender los efectos infrarrojos asociados a campos livianos o no masivos en el universo temprano. Por un lado se considera la Accion Efectiva de dos particulas Irreducible (2PIEA) en la aproximacion de Hartree, que si bien es exacta en el limite de N grande para un modelo con simetria O(N), para un numero finito de campos deja de ser completamente consistente. Para recuperar en parte algunas propiedades de la 2PIEA exacta, se deben imponen ciertas relaciones de consistencia en el proceso de renormalizacion, lo cual afecta las partes finitas de los contraterminos. Se ha prestado particular atencion a este proceso, generalizandolo a espacios curvos para obtener las ecuaciones de evolucion del valor medio del campo renormalizadas. Se estudio el potencial efectivo en la aproximacion de Hartree, buscando las condiciones para la existencia de soluciones con ruptura espontanea de simetria. Resultados previos en la literatura muestran que estas soluciones no existen en el limite de N grande, asi como tampoco para N finito con el esquema de renormalizacion usual. Por otro lado, adoptando la renormalizacion consistente, se encuentran soluciones con ruptura de simetria, cuya existencia sin embargo depende del punto de renormalizacion. Luego, se consideraron las ecuaciones de Einstein Semiclasicas en la aproximacion de Hartree, renormalizandolas con el metodo consistente. Se buscaron soluciones autoconsistentes de estas ecuaciones en combinacion con las ecuaciones del campo, estudiando si el efecto de los campos sobre la curvatura puede generar o no una restauracion de la simetria. En particular se encontraron soluciones donde los efectos cuanticos son los responsables de la expansion acelerada del universo, en ausencia de constante cosmologica. Estos resultados tambien dependen del punto de renormalizacion. Otro metodo no perturbativo muy poderoso proviene de formular la Teoria de Campos en el espacio De Sitter Euclideo, el cual tiene la propiedad de ser compacto. Debido a esto, el campo admite una descomposicion en modos discreta que pone en evidencia que las divergencias infrarrojas provienen de las contribuciones del modo constante, o modo cero. Es posible formular una teoria sin problemas infrarrojos tratando no perturbativamente al modo cero, y de manera perturbativa a los modos inhomogeneos. Las correcciones provenientes de estos ultimos son de orden superior en una expansion infrarroja. Consideramos la generalizacion de esta formulacion a la teoria con simetria O(N), calculando la masa dinamica y el potencial efectivo. Esto permite realizar una comparacion adecuada con los resultados provenientes de la 2PIEA donde el limite de N grande permite obtener resultados mas confiables.