Avaliar a capacidade de predição das metodologias de redes de neurônios, SARIMA de Box-Jenkins, suavização exponencial e modelos de regressão com coeficientes variando no tempo é interessante no prognóstico da inflação colombiana, cujo conhecimento é primordial para o desenho de políticas econômicas e programas estratégicos de investimentos tanto no setor público como no privado. Uma aplicação prognosticando valores futuros da série de inflação colombiana nos permite visualizar que as redes de neurônios com ajuda de componentes não observáveis, podem ser mais precisas comparadas com as metodologias tradicionais de Box-Jenkins, a suavização exponencial e os mínimos quadrados flexíveis. Além disso, os resultados revelam que combinações de prognósticos utilizando-se as redes neurônios, têm uma tendência a proporcionar melhores predições.