Logotipo ImpactU
Autor

Quality Web Information Retrieval: Towards Improving Semantic Recommender Systems with Friendsourcing

Acceso Cerrado
ID Minciencias: ART-0000013064-23746
Ranking: ART-GC_ART

Abstract:

Web content quality is crucial in any domains, but it is even more critical in the health and e-learning ones. Users need to retrieve information that is precise, believable, and relevant to their problem. With the exponential growth of web contents, Recommender System has become indispensable for discovering quality information that might interest or be needed by web users. Quality-based Recommender Systems take into account quality criteria like credibility, believability, readability. In this paper, we present an approach to conceive Social Semantic Recommender Systems. In this approach a friendsourcing strategy is applied to better adequate recommendations to the user needs. The friendsourcing strategy focuses on the use of social force to assess quality of web content. In this paper we introduce the main research issues of this approach and detail the road-map we are following in the QHIR Project.

Tópico:

Recommender Systems and Techniques

Citaciones:

Citations: 2
2

Citaciones por año:

Altmétricas:

No hay DOI disponible para mostrar altmétricas

Información de la Fuente:

FuenteCadernos de Informática
Cuartil año de publicaciónNo disponible
Volumen6
Issue1
Páginas289 - 292
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Scienti ID0000013064-23746Minciencias IDART-0000013064-23746Openalex URLhttps://openalex.org/W2208368347
Artículo de revista