The Combustion instability is an undesirable condition reached in some combustion systems, as during the operation of gas turbines. It refers to self-excited oscillations of pressure that may affect the combustion chamber and generate noise. A recent generalized tendency in combustion processes aims to the use of lean combustion (low fuel/air ratios) for pollutants reduction, nevertheless this sort of mixtures are more susceptible to combustion instabilities. The complex relationship that generates the phenomenon can be summarized as the coupling between flame and acoustics. In this paper it is outlined a numerical approach to this phenomenon by solving a basic computational combustion model (by Direct Numerical Simulation). In this model a self-excited system is simulated through imposed oscillations in reactants flows. Finally, results for this numerical simulation are compared against other simulations and experimental available data.
Tópico:
Combustion and flame dynamics
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
No hay DOI disponible para mostrar altmétricas
Información de la Fuente:
FuenteDOAJ (DOAJ: Directory of Open Access Journals)