Colombia has developed an ambitious project to produce fuel ethanol. Nowadays, Colombia is one of the leading countries in Latin America for the biofuels production. However, some of its industrial plants producing ethanol pre- sent problems during the startup and the operation of fermenters, which adversely affects the productivity of the glo- bal process. Theoretical and experimental studies show that the process' dynamic behavior depends on the stability phenomenon exhibited by the system. This work shows the influence of the stability regions on the process' efficiency. For this, economic and environmental index were used. A stability analysis was carried out. The dilution rate was selected as the main operating parameter. An own program developed on Matlab ® was used to generate bifurcation diagrams and phase diagrams. The Waste Reduction Algorithm (WAR) developed by the Environmental Protection Agency of the United States, and the SuperPro Designer® software were used for estimating the environmental and economic assessment of the process. As a result, it was shown that continuous fermentation processes can be carried out in different stability regions. Likewise, it was shown that the response variables, such as the yield, depend on the selected operating region. Finally, it was concluded that the evaluation of fermentation processes' stability must be included in the stages for designing of bioprocess in order to ensure a good performance.