This work presents the development and experimentation of a heat recovery system from the humidified air from a fruit dryer by heat pipes. The recovery system consists in a heat pipes based heat exchanger that allows the efficient transfer of the waste energy to a heat pump refrigerant to which the heat is transferred. The experimental work involved the characterization of the previously built heat pipes by measuring the thermal resistance under different operating conditions, such as the pipe's horizontal inclination, thermal bath temperature and supplied power. It was found that the average thermal resistance of the heat pipes is 0.02[K/W] for the 50-300 W power range. With these data, the heat recovery system (a bench of tubes) was designed, formed by 90 tubes with 2.54cm diameter and 500cm length. A CFD program based on Comsol 4.2a was developed for simulating the energy transfer between the humidified air and the heat pipes. It was used for sizing the heat pipes exchanger, predicting the humidified air condensation and evaluating the pressure drop through the tubes array. Finally, the overall system was simulated using ASPEN PLUS, which simulated the energy transfer process from it to the heat pipes system, which is transferred to a falling film refrigerant inside the heat pump that consequently delivers the recovered heat as a water preheating stage in the drying process. By this simulation a fuel saving of 0.34 [kg/h]. The last part of this work involves the experimental validation of the equipment, by which a fuel saving in GLP of 0.17 [kg/h] regarding the same equipment without the energy recovery system herein developed.