The independent transition to a heterotrophic lifestyle in plants drove remarkably convergent evolutionary trajectories, characterized by morphological modifications and reductions in their plastomes. The characteristics of the minimum plastome required for survival, if they exist, remain a topic of debate. The holoparasitic family Balanophoraceae was initially presumed to have entirely lost their plastids, however, recent reports revealed the presence of reduced and aberrant plastids with odd genomes. Among the outstanding features of these genomes are the highest nucleotide composition bias across the tree of life and the only two genetic code changes ever recorded among plants. In this study, we assembled the plastomes from five genera, four of which had never been studied. Major common features include extremely high AT content, the lack of a typical quadripartite structure and extensive size reduction due to gene elimination and genome compaction. The family exhibits multiple gene and intron losses, and a broad range of scenarios regarding the evolution of the plastid trnE , a gene considered essential because of its dual function in tetrapyrrole biosynthesis and translation within the plastid. In addition, phylogenetic analyses suggest that the genus Scybalium is not monophyletic. An evolutionary model for the plastomes of the Balanophoraceae is proposed.
Tópico:
Plant Parasitism and Resistance
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
0
Información de la Fuente:
FuenteProceedings of the Royal Society B Biological Sciences