(1) Background: Nature-based solutions (NbS), particularly through forest biomass, are crucial in mitigating climate change. While forest plantations play a critical role in carbon capture, the absence of species-specific biomass estimation models presents a significant challenge. This research focuses on developing allometric models to accurately estimate the aboveground biomass of Eucalyptus saligna Sm in Ecuador’s Lower Montane thorny steppe. (2) Methods: Conducted at the Tunshi Experimental Station of ESPOCH in Chimborazo, Ecuador, the research involved 46 trees to formulate biomass predictive models using both destructive and non-destructive methods. Sixteen generic models were tested using the ordinary least squares method. (3) Results: The most effective allometric equation for estimating six-year-old E. saligna biomass was Ln(B) = −0.952 + 1.97∗Ln(dbh), where B = biomass in kg/tree, and dbh = diameter at breast height in cm. This model represents a valuable contribution to improve biomass and carbon estimates in mitigation projects in Ecuador. (4) Conclusions: The tested models stand out for their simplicity, requiring only dbh as input, and demonstrate high accuracy and fit to contribute to the field of climate change mitigation.