Logotipo ImpactU
Autor

Spatiotemporal Gait Variables Using Wavelets for an Objective Analysis of Parkinson Disease

Acceso Cerrado

Abstract:

Parkinson's disease generates a special interest in factors such as gait patterns, posture patterns, and risk of falls. The human gait pattern has a basic unit called the gait cycle, composed of two phases: stance and swing. Using gait analysis it is possible to get spatiotemporal variables as walking speed and step number derived from stance and swing phases. In this paper, we explore the feasibility of wavelet techniques to analyze gait signals, we use a member of Daubechies family to distinguish automatically gait phases, this approach allowed us to estimate spatiotemporal variables that shows significant differences between Parkinson patients and non-Parkinson patients, this result aims to allow clinical experts to easily diagnose and assess Parkinson patients, with short evaluation times and with non-invasive technologies.

Tópico:

Parkinson's Disease Mechanisms and Treatments

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteStudies in health technology and informatics
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas173 - 178
pISSNNo disponible
ISSN0926-9630

Enlaces e Identificadores:

Capítulo de libro