Logotipo ImpactU
Autor

GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach

Acceso Abierto

Abstract:

Endoscopy is vital for detecting and diagnosing gastrointestinal diseases. Systematic examination protocols are key to enhancing detection, particularly for the early identification of premalignant conditions. Publicly available endoscopy image databases are crucial for machine learning research, yet challenges persist, particularly in identifying upper gastrointestinal anatomical landmarks to ensure effective and precise endoscopic procedures. However, many existing datasets have inconsistent labeling and limited accessibility, leading to biased models and reduced generalizability. This paper introduces GastroHUN, an open dataset documenting stomach screening procedures based on a systematic protocol. GastroHUN includes 8,834 images from 387 patients and 4,729 labeled video sequences, all annotated by four experts. The dataset covers 22 anatomical landmarks in the stomach and includes an additional category for unqualified images, making it a valuable resource for AI model development. By providing a robust public dataset and baseline deep learning models for image and sequence classification, GastroHUN serves as a benchmark for future research and aids in the development of more effective algorithms.

Tópico:

Colorectal Cancer Screening and Detection

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteScientific Data
Cuartil año de publicaciónNo disponible
Volumen12
Issue1
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista