In this study, we research the innovative application of multi-walled carbon nanotubes (MWCNTs) as corrosion inhibitors in Portland cement embedded steel. The physicochemical properties of the dispersion solutions were evaluated, varying the storage time, to analyze their effect on corrosion resistance. Using a dispersion energy of 440 J/g and a constant molarity of 10 mM, stable dispersions were achieved for up to 3 weeks. These dispersions were characterized using Raman spectroscopy, UV-Vis spectroscopy and Zeta potential spectroscopy to assess the stability and structural damage of the MWCNTs. These results show that the addition of MWCNTs not only reduces the porosity of the cement matrix, but also forms an effective barrier against chloride ion intrusion, protecting the reinforcing steel. This approach stands out for combining improved mechanical properties and significant corrosion resistance, representing a promising innovation in the development of more durable construction materials.