The development of matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS) has traditionally relied on experimental efforts. Here, we propose a Goal-Directed artificial intelligence generative model, fueled by computational chemistry calculated data, to construct a chemical space optimized for Electron Transfer (ET) processes in MALDI analysis. We utilized a group of 30 reported ET matrices, subjected to structural enumeration and molecular properties prediction using semiempirical and
Tópico:
Analytical Chemistry and Chromatography
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
0
Información de la Fuente:
FuenteJournal of the American Society for Mass Spectrometry