Logotipo ImpactU
Autor

A degenerate version of hypergeometric Bernoulli polynomials: announcement of results

Acceso Cerrado

Abstract:

Abstract This article explores some properties of degenerate hypergeometric Bernoulli polynomials, which are defined through the following generating function <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:mrow> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mi>m</m:mi> </m:msup> <m:msubsup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mi>t</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mi>t</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>-</m:mo> <m:msubsup> <m:mo>∑</m:mo> <m:mrow> <m:mi>l</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>m</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mn>1</m:mn> <m:mo>)</m:mo> </m:mrow> <m:mi>l</m:mi> <m:mo>,</m:mo> <m:mi>λ</m:mi> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mi>l</m:mi> </m:msup> </m:mrow> <m:mrow> <m:mi>l</m:mi> <m:mo>!</m:mo> </m:mrow> </m:mfrac> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:msup> <m:mrow/> <m:mo>∞</m:mo> </m:msup> </m:mrow> </m:munderover> <m:mrow> <m:msubsup> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>m</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:mrow> </m:msubsup> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>!</m:mo> </m:mrow> </m:mfrac> <m:mo>,</m:mo> <m:mi> </m:mi> <m:mi> </m:mi> <m:mi> </m:mi> <m:mi> </m:mi> <m:mrow> <m:mo>|</m:mo> <m:mi>t</m:mi> <m:mo>|</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mo>min</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:mo>,</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mrow> <m:mo>|</m:mo> <m:mi>λ</m:mi> <m:mo>|</m:mo> </m:mrow> </m:mrow> </m:mfrac> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> <m:mo>\</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mn>0</m:mn> <m:mo>}</m:mo> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> {{{t^m}e_\lambda ^x\left( t \right)} \over {e_\lambda ^x\left( t \right) - \sum\nolimits_{l = 0}^{m - 1} {\left( 1 \right)l,\lambda{{{t^l}} \over {l!}}} }} = \sum\limits_{n = 0}^{^\infty } {B_{n,\lambda }^{\left[ {m - 1} \right]}} \left( x \right){{{t^n}} \over {n!}},\,\,\,\,\left| t \right| &lt; \min \left\{ {2\pi ,{1 \over {\left| \lambda \right|}}} \right\},\lambda \in \mathbb{R}\backslash \left\{ 0 \right\}. We deduce their associated summation formulas and their corresponding determinant form. Also we focus our attention on the zero distribution of such polynomials and perform some numerical illustrative examples, which allow us to compare the behavior of the zeros of degenerate hypergeometric Bernoulli polynomials with the zeros of their hypergeometric counterpart. Finally, using a monomiality principle approach we present a differential equation satisfied by these polynomials.

Tópico:

Mathematical functions and polynomials

Citaciones:

Citations: 3
3

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteCommunications in Applied and Industrial Mathematics
Cuartil año de publicaciónNo disponible
Volumen15
Issue2
Páginas36 - 43
pISSNNo disponible
ISSN2038-0909

Enlaces e Identificadores:

Artículo de revista