The augmented reality (AR) is a technology that combines in real time the environment information with the lived information of the virtual environment. This technology can be used in the theory of didactic situations (TDS) for the learning of spatial geometry. The aim of this study was to evaluate the effect of AR and TDS on the learning of Platonic solids (PS) in junior high school (7th degree) students. 40 students were allotted in both an experimental -EG- (n=20) and a control group -CG- (n=20). Students from EG received a didactic sequence related to PS and AR and CG received a traditional study class with a 3D PS. The learning of the students of both groups was assessed by semiquantitative scale (from 1 to 4) comparing data gathered at the beginning of the study (pretest results) with data obtained after applying the didactic sequence or receiving the traditional study class. Results from both groups were compared with a U-Mann-Whitney test. Data were presented as median (range) A P < 0.05 was accepted as statistically significant. Pretest data revealed that the start previous knowledge about PS was similar between both groups. Posttest data shown that students of the EG learned better about PS than students of the CG. The use of AR and TDS could improve the learning PS in students because they can easily identify and interact with the common patterns of this geometric elements as if these were real objects.