Logotipo ImpactU
Autor

Existence of global solutions for cross-diffusion models in a fractional setting

Acceso Abierto

Abstract:

This article is devoted to the analysis of a fractional chemotaxis model in \(\mathbb{R}^N\) with a time fractional variation in the Caputo sense and a fractional spatial diffusion. This model encompasses the fractional Keller-Segel system [9] which describes the movement of living organisms towards higher concentration regions of chemical attractants, and a fractional Lotka-Volterra competition model [16] describing the competition interspecies in which one of the competing species avoids encounters with rivals by means of chemorepulsion. We prove product estimates in Besov-Morrey spaces and derive global estimates for mild solutions of the fractional heat equation. We use these results to prove the existence and uniqueness of global mild solutions for the differential system in a framework of Besov-Morrey spaces. For more information see https://ejde.math.txstate.edu/Volumes/2023/77/abstr.html

Tópico:

Mathematical Biology Tumor Growth

Citaciones:

Citations: 2
2

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteElectronic Journal of Differential Equations
Cuartil año de publicaciónNo disponible
Volumen2023
Issue01-87
Páginas77 - 77
pISSNNo disponible
ISSN1550-6150

Enlaces e Identificadores:

Artículo de revista