Abstract In this work, we examined the kinematic vortex state in a low-temperature, mesoscopic superconducting thin film in presence of an external applied current $$\varvec{J}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>J</mml:mi> </mml:mrow> </mml:math> , at zero magnetic field. We analyzed the voltage-current ( $$\varvec{V-I}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>-</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> ), resistivity-current ( $$\varvec{R-I}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>-</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> ) curves, as well as the vortex-anti-vortex velocity $$\varvec{V_m}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:math> and the superconducting-electron density (norm of the superconduting order parameter $$\varvec{\psi }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ψ</mml:mi> </mml:mrow> </mml:math> ) as an applied current function. Additionally, we have calculated the voltage as a function of characteristic time ( $$\varvec{V-t}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>-</mml:mo> <mml:mi>t</mml:mi> </mml:mrow> </mml:math> ). The sample presents a roundabout shaped pinning center fabricated with a lower low-temperature superconducting material, which allows for control over the vortex dynamics within the sample. To study this system, we have solved the generalized time-dependent Ginzburg-Landau equations for a single-condensate system. Our results demonstrate that the kinematic vortices enter the sample through regions where the superconductivity is depleted, revealing an intriguing and novel behavior of the phase-slip lines in the defect. We found that when a higher $$\varvec{J}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>J</mml:mi> </mml:mrow> </mml:math> is applied and the defect is not centered, the point where the vortex anti-vortex pairs enter the film moves away from the defect and are located in a point tangent to the outer circle of the defect. Besides, our results show a way to control the dynamics of the vortices, critical currents, and points of annihilation or creation of the cinematic vortices by including defects in the sample, important in the design and development of devices applied in industry and engineering.