Abstract The present study compares two synthesis routes to obtain titanium dioxide and reduced graphene oxide nanocomposites that could be used as photoelectrodes in a water-splitting photoelectrocatalytic system. The nanocomposites were obtained using in-situ sol-gel and solvothermal methods as fabrication routes. Subsequently, the materials obtained were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy techniques. The results indicated a strong interaction between reduced graphene oxide and titanium dioxide nanomaterials using both synthesis processes; however, the in-situ sol-gel method exhibited more significant conservation of the aromatic rings of the graphene structure and a lower bandgap (2.45 eV), which are suitable characteristics for its potential use in photoelectrocatalytic processes.