Abstract:
Treatment of Cyanide Waters by Photo-Electrocatalytic-Peroxone processJohn Wilman Rodriguez Acosta a, b, Nilson Marriaga-Cabrales b, Anna Hankin a, ca Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZb Chemical Engineering School, Universidad del Valle, Cali-Colombia, 760032c Institute for Molecular Science and Engineering, Imperial College London, SW7 2AZ, UKMaterials for Sustainable Development Conference (MATSUS)Proceedings of MATSUS Spring 2024 Conference (MATSUS24)#PhotoMat - Advances in Photo-driven Energy Conversion and Storage: From Nanoscale Materials to Sustainable SolutionsBarcelona, Spain, 2024 March 4th - 8thOrganizers: Michelle Browne, Bahareh Khezri and Katherine VillaOral, John Wilman Rodriguez Acosta, presentation 321DOI: https://doi.org/10.29363/nanoge.matsus.2024.321Publication date: 18th December 2023Wastewater generated in gold leaching processes, particularly in cyanidation treatments, still contains harmful amounts of cyanide (free and complexed with different heavy metals). In most cases, the cyanide content in these effluents exceeds the minimum concentration limits established for their discharge. Therefore, the highly toxic nature of these effluents requires adequate treatment prior to disposal. In this respect, a novel advanced oxidation technique was evaluated for the elimination of cyanide compounds, called here as photo-electrocatalytic-peroxone (PEPX), consisting of the coupling of two processes: photoelectrocatalysis (PEC) and electro-peroxone (EPX). Different parameters and operating conditions were evaluated such as the electrogeneration of hydrogen peroxide, pH, anodic and cathodic overpotential, photon flux, the presence of substrates on the photocurrent and cathodic reduction of oxygen. To interpret the interfacial phenomena that were presented, electrochemical techniques such as linear and cyclic voltammetry, chronoamperometry, open-circuit chronopotentiometry, rotating disk electrode (RDE) and electrochemical impedance spectroscopy were used. Likewise, through a response surface analysis, the effect of variables such as current density and initial substrate concentration on the free cyanide degradation capacity and on the specific energy consumption of the process was determined. With the proposed process, 100% of the CN- ion was degraded using 0.086 mA/cm2 and 94 ppm initial concentration, with the additional degradation of CNO- (29.4%) and a specific energy consumption of 4.68 kW-h L-1. Furthermore, in the treatment of cyanide wastewater from mining activities, the complete degradation of the metal cyanide complexes (copper and iron) and the total precipitation of their metals as hydroxides and oxy-hydroxides were evident. Finally, it was evident that the PEPX process could not only degrade cyanide substrates but could also provide, through photovoltaic effects, part of the electrical energy necessary for the operation of the cell. © FUNDACIO DE LA COMUNITAT VALENCIANA SCITOnanoGe is a prestigious brand of successful science conferences that are developed along the year in different areas of the world since 2009. Our worldwide conferences cover cutting-edge materials topics like perovskite solar cells, photovoltaics, optoelectronics, solar fuel conversion, surface science, catalysis and two-dimensional materials, among many others.nanoGe Fall MeetingnanoGe Fall Meeting (NFM) is a multiple symposia conference celebrated yearly and focused on a broad set of topics of advanced materials preparation, their fundamental properties, and their applications, in fields such as renewable energy, photovoltaics, lighting, semiconductor quantum dots, 2-D materials synthesis, charge carriers dynamics, microscopy and spectroscopy semiconductors fundamentals, etc.nanoGe Spring MeetingThis conference is a unique series of symposia focused on advanced materials preparation and fundamental properties and their applications, in fields such as renewable energy (photovoltaics, batteries), lighting, semiconductor quantum dots, 2-D materials synthesis and semiconductors fundamentals, bioimaging, etc.International Conference on Hybrid and Organic PhotovoltaicsInternational Conference on Hybrid and Organic Photovoltaics (HOPV) is celebrated yearly in May. The main topics are the development, function and modeling of materials and devices for hybrid and organic solar cells. The field is now dominated by perovskite solar cells but also other hybrid technologies, as organic solar cells, quantum dot solar cells, and dye-sensitized solar cells and their integration into devices for photoelectrochemical solar fuel production.Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and OptoelectronicsThe main topics of the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP) are discussed every year in Asia-Pacific for gathering the recent advances in the fields of material preparation, modeling and fabrication of perovskite and hybrid and organic materials. Photovoltaic devices are analyzed from fundamental physics and materials properties to a broad set of applications. The conference also covers the developments of perovskite optoelectronics, including light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and OptoelectronicsThe International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and Optoelectronics (NIPHO) is the best place to hear the latest developments in perovskite solar cells as well as on recent advances in the fields of perovskite light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.
Tópico:
Advanced oxidation water treatment