Abstract Let $$\Sigma (f)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Σ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> be the singular points of a polynomial $$f \in \mathbb {K}[x,y]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>K</mml:mi> <mml:mo>[</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> in the plane $$\mathbb {K}^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where $$\mathbb {K}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>K</mml:mi> </mml:math> is $$\mathbb {R}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>R</mml:mi> </mml:math> or $$\mathbb {C}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>C</mml:mi> </mml:math> . Our goal is to study the singular point map $$\mathfrak {S}_d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>d</mml:mi> </mml:msub> </mml:math> , it sends polynomials f of degree d to their singular points $$\Sigma (f)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Σ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . Very roughly speaking, a polynomial f is essentially determined when any other g sharing the singular points of f satisfies that $$f = \lambda g$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>g</mml:mi> </mml:mrow> </mml:math> ; here both are polynomials of degree d , $$\lambda \in \mathbb {K}^* $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> </mml:math> . In order to describe the degree d essentially determined polynomials, a computation of the required number of isolated singular points $$\delta (d)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>δ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is provided. A dichotomy appears for the values of $$\delta (d)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>δ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> ; depending on a certain parity, the space of essentially determined polynomials is an open or closed Zariski set. We compute the map $$\mathfrak {S}_{3}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msub> </mml:math> , describing under what conditions a configuration of 4 points leads to a degree 3 essentially determined polynomial. Furthermore, we describe explicitly configurations supporting degree 3 non essential determined polynomials. The quotient space of essentially determined polynomials of degree 3 up to the action of the affine group $$\hbox { Aff}\hspace{1.42271pt}(\mathbb {K}^2)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace/> <mml:mtext>Aff</mml:mtext> <mml:mspace/> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> determines a singular $$\mathbb {K}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>K</mml:mi> </mml:math> -analytic surface.
Tópico:
Advanced Differential Equations and Dynamical Systems