Abstract We study the distribution of the last symbol statistics on the sets of Catalan words avoiding a pattern of length at most three. For each pattern p , we provide a bivariate rational generating function where the coefficient $$\varvec{c}_p(n,k)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> of $$x^ny^k$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:mrow> </mml:math> in its series expansion is the number of length n Catalan words avoiding p and ending with the symbol k . We deduce recurrence relations or closed forms for $$\varvec{c}_p(n,k)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and we provide asymptotic approximations for the expectation of the last symbol on all Catalan words avoiding p . We end this paper by describing a computational approach using computer algebra.