Abstract Leptoquarks ( $$\textrm{LQ}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>LQ</mml:mtext> </mml:math> s) are hypothetical particles that appear in various extensions of the Standard Model (SM), that can explain observed differences between SM theory predictions and experimental results. The production of these particles has been widely studied at various experiments, most recently at the Large Hadron Collider (LHC), and stringent bounds have been placed on their masses and couplings, assuming the simplest beyond-SM (BSM) hypotheses. However, the limits are significantly weaker for $$\textrm{LQ}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>LQ</mml:mtext> </mml:math> models with family non-universal couplings containing enhanced couplings to third-generation fermions. We present a new study on the production of a $$\textrm{LQ}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>LQ</mml:mtext> </mml:math> at the LHC, with preferential couplings to third-generation fermions, considering proton-proton collisions at $$\sqrt{s} = 13 \, \textrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> <mml:mspace/> <mml:mtext>TeV</mml:mtext> </mml:mrow> </mml:math> and $$\sqrt{s} = 13.6 \, \textrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>13.6</mml:mn> <mml:mspace/> <mml:mtext>TeV</mml:mtext> </mml:mrow> </mml:math> . Such a hypothesis is well motivated theoretically and it can explain the recent anomalies in the precision measurements of $$\textrm{B}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>B</mml:mtext> </mml:math> -meson decay rates, specifically the $$R_{D^{(*)}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>R</mml:mi> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow/> <mml:mo>∗</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:msub> </mml:math> ratios. Under a simplified model where the $$\textrm{LQ}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>LQ</mml:mtext> </mml:math> masses and couplings are free parameters, we focus on cases where the $$\textrm{LQ}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>LQ</mml:mtext> </mml:math> decays to a $$\tau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> lepton and a $$\textrm{b}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>b</mml:mtext> </mml:math> quark, and study how the results are affected by different assumptions about chiral currents and interference effects with other BSM processes with the same final states, such as diagrams with a heavy vector boson, $$\textrm{Z}^{\prime }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mtext>Z</mml:mtext> <mml:mo>′</mml:mo> </mml:msup> </mml:math> . The analysis is performed using machine learning techniques, resulting in an increased discovery reach at the LHC, allowing us to probe new physics phase space which addresses the $$\textrm{B}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>B</mml:mtext> </mml:math> -meson anomalies, for $$\textrm{LQ}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>LQ</mml:mtext> </mml:math> masses up to $$5.00\, \textrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>5.00</mml:mn> <mml:mspace/> <mml:mtext>TeV</mml:mtext> </mml:mrow> </mml:math> , for the high luminosity LHC scenario.
Tópico:
Particle physics theoretical and experimental studies