Logotipo ImpactU
Autor

G‐crossed braided zesting

Acceso Abierto

Abstract:

Abstract For a finite group , a ‐crossed braided fusion category is a ‐graded fusion category with additional structures, namely, a ‐action and a ‐braiding. We develop the notion of ‐crossed braided zesting: an explicit method for constructing new ‐crossed braided fusion categories from a given one by means of cohomological data associated with the invertible objects in the category and grading group . This is achieved by adapting a similar construction for (braided) fusion categories recently described by the authors. All ‐crossed braided zestings of a given category are ‐extensions of their trivial component and can be interpreted in terms of the homotopy‐based description of Etingof, Nikshych, and Ostrik. In particular, we explicitly describe which ‐extensions correspond to ‐crossed braided zestings.

Tópico:

Algebraic structures and combinatorial models

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of the London Mathematical Society
Cuartil año de publicaciónNo disponible
Volumen109
Issue1
Páginase12816 - N/A
pISSNNo disponible
ISSN1469-7750

Enlaces e Identificadores:

Artículo de revista