<span lang="EN-US">Accurate estimation of forest canopy height is essential for monitoring forest ecosystems and assessing their carbon storage potential. This study evaluates the effectiveness of different remote sensing techniques for estimating forest canopy height in tropical dry forests. Using field data and remote sensing data from airborne lidar and polarimetric synthetic aperture radar (SAR), a random forest (RF) model was developed to estimate canopy height based on different indices. Results show that the normalize difference build-up index (NDBI) has the highest correlation with canopy height, outperforming other indices such as relative vigor index (RVI) and polarimetric vertical and horizontal variables. The RF model with NDBI as input showed a good fit and predictive ability, with low concentration of errors around 0. These findings suggest that NDBI can be a useful tool for accurately estimating forest canopy height in tropical dry forests using remote sensing techniques, providing valuable information for forest management and conservation efforts.</span>
Tópico:
Remote Sensing and LiDAR Applications
Citaciones:
1
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteInternational Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering