Logotipo ImpactU
Autor

Shot-gather Reconstruction using a Deep Data Prior-based Neural Network Approach

Acceso Abierto

Abstract:

Seismic surveys are often affected by environmental obstacles or restrictions that prevent regular sampling in seismic acquisition. To address missing data, various methods, including deep learning techniques, have been developed to extract features from complex information, albeit with the limitation of requiring external seismic databases. While previous works have primarily focused on trace reconstruction, missing shot-gathers directly impact the seismic processing flow and represent a major challenge in seismic data regularization. In this paper, we propose DIPsgr, a seismic shot-gather reconstruction method that uses only the incomplete seismic acquisition measurements to estimate their missing information employing unsupervised deep learning. Numerical experiments on three databases demonstrate that DIPsgr recovers the complete set of traces in each shot-gather, with preserved information and seismic events.

Tópico:

Seismic Imaging and Inversion Techniques

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteRevista UIS Ingenierías
Cuartil año de publicaciónNo disponible
Volumen22
Issue3
PáginasNo disponible
pISSN1657-4583
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista