Abstract In this article, we revisit projectile motion assuming a retarding force proportional to the velocity, <?CDATA $\vec{{F}_{r}}=-{mk}\vec{V}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover accent="true"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>r</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>⃗</mml:mo> </mml:mrow> </mml:mover> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mi mathvariant="italic">mk</mml:mi> <mml:mover accent="true"> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⃗</mml:mo> </mml:mrow> </mml:mover> </mml:math> . We obtain an analytical expression for the set of maxima of the trajectories, in Cartesian coordinates, without using the Lambert W function. Also, we investigate the effect of parameter k on the radial distance of the projectile showing that the radial distance oscillates from a certain critical launch angle and find an approximate expression for it. In our analysis, we consider the impact of parameter k in the kinetic energy, the potential energy, the total energy, the rate of energy loss, and the phase space. Our results can be included in an intermediate-level classical mechanics course.