Abstract Let $$M_s^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>s</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> be an orientable surface immersed in the De Sitter space $$\mathbb {S}_1^3\subset \mathbb {R}^4_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>⊂</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> or anti de Sitter space $$\mathbb {H}_1^3\subset \mathbb {R}^4_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>⊂</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mn>4</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> . In the case that $$M_s^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>s</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> is of $$L_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> -2-type we prove that the following conditions are equivalent to each other: $$M_s^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>s</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> has a constant principal curvature; $$M_s^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>s</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> has constant mean curvature; $$M_s^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>s</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> has constant second mean curvature. As a consequence, we also show that an $$L_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> -2-type surface is either an open portion of a standard pseudo-Riemannian product, or a B -scroll over a null curve, or else its mean curvature, its Gaussian curvature and its principal curvatures are all non-constant.
Tópico:
Geometric Analysis and Curvature Flows
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
0
Información de la Fuente:
FuenteBulletin of the Malaysian Mathematical Sciences Society