Logotipo ImpactU
Autor

An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection

Acceso Abierto

Abstract:

The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.

Tópico:

Metaheuristic Optimization Algorithms Research

Citaciones:

Citations: 9
9

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteiScience
Cuartil año de publicaciónNo disponible
Volumen26
Issue5
Páginas106679 - 106679
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista