The IEA estimates energy demand for refrigeration by 2050 could triple. Models that allow discovery of energy saving opportunities are a must. Models for cooling systems emphasize the thermal domain leaving in the background the relationships among other energy domains and the power input source consumption. This article fills a gap in the scientific literature presenting a comprehensive model of a VCRS based on experimental measurements and catalog data. The model starts from the empirical identification of the thermal part of a commercial fridge, followed by theoretical models based on catalog data for the electrical, mechanical, and hydraulic parts. The model can be used as a benchmarking for energy activity, performances, controller effectiveness, and impact of new technologies. The VCRS is simulated for both traditional on-off discrete operation and a continuous operation using new technologies such as variable speed compressors and adjustable valves. Strategies facilitating a better use of the energy while fulfilling a desired behavior are possible through the comprehensive model.