Logotipo ImpactU
Autor

On a Calderón Preconditioner for the Symmetric Formulation of the Electroencephalography Forward Problem Without Barycentric Refinements

Acceso Cerrado

Abstract:

We present a Calderón preconditioning scheme for the symmetric formulation of the forward electroencephalographic (EEG) problem that cures both the dense-discretization and the high-contrast breakdown. Unlike existing Calderón schemes presented for the EEG problem, it is refinement-free, that is, the electrostatic integral operators are not discretized with basis functions defined on the barycentrically-refined dual mesh. In fact, in the preconditioner, we reuse the original system matrix thus reducing computational burden. Moreover, the proposed formulation gives rise to a symmetric, positive-definite system of linear equations, which allows the application of the conjugate gradient method, an iterative method that exhibits a smaller computational cost compared to other Krylov subspace methods applicable to non-symmetric problems. Numerical results corroborate the theoretical analysis and attest of the efficacy of the proposed preconditioning technique on both canonical and realistic scenarios.

Tópico:

Matrix Theory and Algorithms

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteSSRN Electronic Journal
Cuartil año de publicaciónNo disponible
Volumen491
IssueNo disponible
Páginas112374 - N/A
pISSNNo disponible
ISSN1556-5068

Enlaces e Identificadores:

Artículo de revista