Logotipo ImpactU
Autor

Boost invariant polynomials for efficient jet tagging

Acceso Abierto

Abstract:

Abstract Given the vast amounts of data generated by modern particle detectors, computational efficiency is essential for many data-analysis jobs in high-energy physics. We develop a new class of physically interpretable boost invariant polynomial (BIP) features for jet tagging that achieves such efficiency. We show that, for both supervised and unsupervised tasks, integrating BIPs with conventional classification techniques leads to models achieving high accuracy on jet tagging benchmarks while being orders of magnitudes faster to train and evaluate than contemporary deep learning systems.

Tópico:

Particle physics theoretical and experimental studies

Citaciones:

Citations: 9
9

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteMachine Learning Science and Technology
Cuartil año de publicaciónNo disponible
Volumen3
Issue4
Páginas04LT05 - 04LT05
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista