Logotipo ImpactU
Autor

Bidimensional uncertainty product associated with two specific Gyrator domains

Acceso Abierto

Abstract:

Abstract The uncertainty principle for a two-dimensional signal, giving us a lower bound for the product of the spreads (uncertainty product) of the signal representations in two specific Gyrator domains (GDs), is developed and presented. The GDs are defined by the Gyrator transform (GT), which is a new mathematical tool for analysis and processing of two-dimensional signals belonging to the linear canonical transforms. The obtained lower bound for the uncertainty principle depends on the two rotation angles that define the two GDs of the two-dimensional signal. The resulting uncertainty principle could be used in image processing and applications based on the GT. Finally, we show that the uncertainty principle for the antisymmetric Fourier transform with a rotation of the coordinates at π/2 is a special case of the bidimensional uncertainty product associated with two specific GDs.

Tópico:

Mathematical Analysis and Transform Methods

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Physics Conference Series
Cuartil año de publicaciónNo disponible
Volumen2307
Issue1
Páginas012011 - 012011
pISSNNo disponible
ISSN1742-6596

Enlaces e Identificadores:

Artículo de revista